Как выбрать тип и высоту молниеотвода

Виды молниеприемников

Системы молниезащиты зданий могут выполняться по различным схемам. Чаще всего используются классические варианты со стержневыми молниеотводами, состоящими из стержней, соединенных с заземляющим контуром специальным проводником. Они отличаются простотой изготовления и надежностью в процессе эксплуатации. В других конструкциях основным элементом служит пространственная сетка, расположенная на крыше здания.

При прямом ударе молнии, она выполняет распределение и последующее гашение разряда. Натяжные системы работают по такому же принципу, что и стержневые конструкции, только принимающие проводники натягиваются по всему периметру крыши защищаемого объекта.

В конструкциях перечисленных схем используются стальные стержни, тросы или сетки, изготовленные из прутка диаметром не ниже 6 мм. Соединение узлов выполняется с помощью сварки. Натяжной защитный молниеотвод применяются на кровлях со сложной конфигурацией. Для пространственной сетки необходимо больше материалов, а их установка достаточно сложная, требующая знаний и практических навыков.

Каждый молниеотвод выбирается в индивидуальном порядке. Учитываются конструктивные особенности зданий и сооружений, их форма, размеры и расположение относительно друг друга. На основе этих данных делается расчет молниезащиты. Все подобные устройства создают условную защитную зону, примыкающую к ним со всех сторон.

Внутри этого пространства все объекты оказываются под защитой, и им не страшны прямые удары молний. Здесь обеспечивается определенная степень надежности, разделенная на два типа: А – 99,5% и более, Б – 95% и более. Второй вариант, как правило, используется на объектах сельского хозяйства.

Молния

Вряд ли кто-то станет оспаривать разрушительные способности этого атмосферного явления. Этот сокрушительный разряд уже давно причислен к особо опасным для жизни и имущества человека природным явлениям.

Особенно беззащитны перед воздействием атмосферного разряда различные информационные системы, технические устройств, а также системы контроля и управления, так как он создает мощнейшие электромагнитные импульсы, оказывающие негативное влияние на все электрические устройства.

Избежать негативного воздействия молнии могут только те строения, в которых установлена система молниезащиты. Особенно актуальным является установка молниезащиты для зданий и сооружений высотного типа. В принципе, монтаж молниезащиты не отличается особой сложностью.

Но при этом многие не желают тратиться на ее установку, а это, как правило, имеет очень негативные последствия и связано с куда большими финансовыми тратами, чем устройство молниезащиты.

Молния представляет собой гигантский электрический искровой разряд, возникающий в атмосфере. Как правило, он формируется во время грозы и проявляется в виде яркой световой вспышки, сопровождающейся раскатами грома.

Мощные атмосферные электрические разряды возникают не только в атмосфере нашей планеты. Их образование характерно и для других планет солнечной системы. Сегодня возникновение молний зафиксировано в атмосфере Юпитера, Урана, Венеры и Сатурна.

Сила тока в разряде молнии может быть от 10–300 тысяч ампер, а напряжение – от нескольких десятков миллионов до миллиарда вольт. Количество расходуемого молнией электричества во время разряда достигает 10 кулонов. А это, согласитесь, достаточно убедительный повод, чтобы задуматься об обустройстве молниеотвода.

Разрушающее действие молнии

Серьезную опасность представляют собой не только прямое попадание молнии в строение, но также те случаи, когда место удара разряда находится в непосредственной близости от различных зданий и сооружения.

Негативные последствия удара молнии

  • Выход из строя всего электрооборудования и системы энергоснабжения сооружений и зданий.
  • Возникновение механических повреждений.
  • Возникновение пожаров.
  • Возникновения травм и увечий людей, находящихся в момент удара молнии в доме.

Виды молниеприемников

Системы молниезащиты зданий могут выполняться по различным схемам. Чаще всего используются классические варианты со стержневыми молниеотводами, состоящими из стержней, соединенных с заземляющим контуром специальным проводником. Они отличаются простотой изготовления и надежностью в процессе эксплуатации. В других конструкциях основным элементом служит пространственная сетка, расположенная на крыше здания.

При прямом ударе молнии, она выполняет распределение и последующее гашение разряда. Натяжные системы работают по такому же принципу, что и стержневые конструкции, только принимающие проводники натягиваются по всему периметру крыши защищаемого объекта.

В конструкциях перечисленных схем используются стальные стержни, тросы или сетки, изготовленные из прутка диаметром не ниже 6 мм. Соединение узлов выполняется с помощью сварки. Натяжной защитный молниеотвод применяются на кровлях со сложной конфигурацией. Для пространственной сетки необходимо больше материалов, а их установка достаточно сложная, требующая знаний и практических навыков.

Каждый молниеотвод выбирается в индивидуальном порядке. Учитываются конструктивные особенности зданий и сооружений, их форма, размеры и расположение относительно друг друга. На основе этих данных делается расчет молниезащиты. Все подобные устройства создают условную защитную зону, примыкающую к ним со всех сторон.

Внутри этого пространства все объекты оказываются под защитой, и им не страшны прямые удары молний. Здесь обеспечивается определенная степень надежности, разделенная на два типа: А – 99,5% и более, Б – 95% и более. Второй вариант, как правило, используется на объектах сельского хозяйства.

Выбор типа молниеотвода

Конструктивно любая молниезащита дома будет состоять из:

  • молниеприемника;
  • токоотвода;
  • заземлителя.

От формы, размера и высоты здания будет зависеть высота молниеотвода (молниеприемника).

Различают три основных вида молниеприемников:

1) штыревой (стержневой);

2) тросовый;

3) сетчатый.

Штыревые и тросовые молниеотводы наиболее распространены, крепятся на крышах зданий или на отдельно стоящих в стороне опорах, высота которых будет рассчитываться по специальной методике. Например, отдельно стоящие молниеприемные штыри на складной треноге для размещения на крыше с углом наклона до 5 градусов для защиты массивных надстроек, а также рядом с постройками на укрепленном грунте на специальных фундаментных блоках, так и без них. Способны выдержать скорость ветра до 145 км/ч.

Устройство сетчатого вида размещается непосредственно на крыше.

В свою очередь молниеприемники могут быть:

  • одиночными;
  • двойными;
  • многократными;
  • отдельно стоящими;
  • изолированными от объекта и неизолированными.

Стандартный стержневой вариант представляет собой возвышающийся над сооружением металлический штырь диаметром 10-16 мм. Расчетная высота молниеприемника позволяет надежно защищать строение от прямого попадания заряда молнии. Надежность сочленения молниеотвода с системой заземления обеспечивает единый защитный контур, по которому производится беспрепятственное прохождение мощного разряда молнии в землю. Основным параметром системы молниезащиты – способность мгновенно переправить колоссальную энергию в глубь земли. Решающую роль будет определять достаточная площадь сечения токопроводящих металлических элементов конструкции молниезащитного контура, который должен выдержать сильный разогрев от прохождения сверх высоких токов молнии. Для этого необходимо максимально снизить величину сопротивления до нескольких Ом, что достигается подбором токопроводящих элементов с низким сопротивлением и достаточно глубоким расположением заземлительного контура, в зависимости от состава земли. Кроме того, при монтаже выбирается наикратчайший путь – длина молниеотвода должна быть ненамного больше высоты молниеотвода, то есть исключаются лишние изгибы.

Можно давать разные рекомендации, но исходить нужно из того, что работы должны вестись опытными профессионалами с должным опытом, которым не надо давать указания, как и что делать. Поскольку требовать безопасность и надежность функционирования системы молниезащиты от непрофессионального монтажника бесполезно, а рассчитывать на авось неблагоразумно – ведь в этом случае проверить на деле работу системы сможет только реальная гроза, принеся с собой заряд проверочной энергии. Поэтому единственная гарантия уверенности в качестве расчета и монтажа – обращение в сертифицированную организацию с солидной репутацией.

выполняет проектирование, установку и обслуживание систем молниезащиты с 2009, объединив в своей команде опытных специалистов.

5.1. Зона защиты стержневых молниеотводов

Зона защиты одиночного стержневого молниеотвода (рис. 16 и 17) представляет собой в вертикальном сечении конус с образующей в виде ломаной линии. Построение зоны защиты для молниеотвода высотой h hx для попарно взятых молниеотводов по диагоналям многоугольника, образованного единичными молниеотводами;
для зданий и сооружений III категории допускается D 5.3. Зона защиты тросовых молниеотводов

Конфигурация зоны защиты одиночного тросового молниеотвода показана на рис. 19. Рис. 19. Зона защиты тросового молниеотвода: 1 — тяжение троса в точке закрепления; 2 — положение троса в середине пролета (с учетом стрелы провеса) Расчет параметров зоны, м, производится по формулам:При этом полная ширина зоны защиты (по аналогии со стержневыми молниеотводами именуемая радиусом защиты) при hx = 0 определяется из выражения: =2,5 hmp, где hmp — высота троса (с учетом его стрелы провеса) над защищаемым объектом, м. На рис. 20. приведена номограмма, по которой в зависимости от заданных величин h, hx можно легко найти искомое значение гх. При расчетах тросовых молниеприемников необходимо учитывать отклонение троса под воздействием ветрового напора. Параметры зоны защиты двойного тросового молниеотвода определяются так же, как в одиночном тросовом молниеотводе. Область зоны в любом сечении между двумя параллельными тросами ограничивается дугой окружности, проходящей через тросы и точку, расположенную между ними на расстоянии L/2 на высоте h0 от поверхности земли.Рис. 20. Номограмма для определения радиуса защиты одиночного тросового молниеотвода

Величина h0, м, определяется по формуле:При разных высотах тросовых молниеотводов величина h0, м, вычисляется по формуле: К = КР

bф/4, где hmp — высота меньшего молниеотвода, м; bф — расстояние между меньшим и фиктивным молниеотводами, м. Радиус дуги окружности, ограничивающий верхнюю часть зоны, равен: R = 3h- h0.При известных значениях h0 и L высота молниеотвода, м, может быть определена по формуле:Рис. 21.

Расчет зоны молниезащиты одиночного стержневого молниеотвода

Номограмма для определения параметров зоны защиты двойного тросового молниеотвода

Тросовый молниеотвод может рассматриваться как двойной только при условии, если отношение (L/h) Расчет молниеотвода

Электрическое сопротивление заземляющего устройства предусматривается в проекте согласно требованиям Правил устройства электроустановок.

Такой контур заземления устанавливается в свободной от застройки зоне участка. Заземлению подлежат:

  • бытовые электрические приборы единичной мощностью свыше 1,3 кВт;
  • металлические корпуса ванн и душевых поддонов (они должны быть соединены металлическими проводниками с трубами водопровода);
  • металлические корпуса сетильников, встраиваемых или устанавливаемых в подвесные потолки, выполненные с применением металла;
  • металлические корпуса бытовых кондиционеров воздуха.

Заземлители устанавливаются до начала электромонтажных работ. Соединение арматуры фундаментов с арматурой стен должна выполнять строительная организация. Заземлители присоединяются к трубопроводам с помощью сварки либо хомута. Если невозможно использовать естественные заземлители, применяются заземлители искусственные. К ним относятся заземляющий контур, который создаётся как для заземления жлектроприборов, так и для молниезащиты.

Молниезащита — это система устройств, обеспечивающая безопасность здания при электрических разрядах в атмосфере. Её основная задача — изменение траектории разрядов молнии и гашение её энергии. Молниезащита включает:

  • молниеприемник — устройство, принимающее разряд молнии;
  • токоотвод — элементы распределения электрического разряда;
  • заземлитель — устройство гашения электрического разряда.

Существует несколько схем молниезащиты. Схема на основе стержневого молниеотвода включает металлический стержень, соединенный кабелями с заземлителем. Молниеотвод на основе «пространственной сетки» устанавливается на крыше дома. Он распределяет и гасит разряд в случае прямого попадания. Схема на основе натяжных систем аналогична схеме стержневого молниеотвода, но при этом проводники натянуты по периметру защищаемой зоны.

Все вышеуказанные конструкции изготавливаются из стальных стержней, канатов или стальных сеток (диаметром не менее 6 мм). Элементы в узлах соединяются сваркой. Наиболее распространена конструкция стержневых молниеотводов поскольку они наиболее просты в изготовлении и обеспечиваются надежность системы.

Молниеотводы на основе натяжных систем используют при устройстве кровель сложной формы. Пространственая сетка требует большего расхода материалов и сложнее в установке. Такой вид молниеотвода целесообразен, если крыша дома выше остальных объектов, находящихся в радиусе 50 м.

Тип молниеотвода (одиночный, двойной и многократный стержневой, одиночный и двойной тросовый) выбирают в зависимости от конструкции зданий и сооружений, их размеров, формы и взаимного расположения.

Рис. 29.1. Зона защиты одиночного стержневого молниеотвода высотой до 150м

Зона защиты молниеотвода представляет собой часть пространства, примыкающего к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Различают зоны защиты двух типов: А — со степенью надежности 99,5 % и выше; Б — со степенью надежности 95 % и выше. Для объектов сельскохозяйственного назначения, как правило, требуется зона Б.

Зона защиты одиночного стержневого молниеотвода высотой h≤ 150м (рис.

Требования СО 153-34.21.122-2003

Помимо вопросов, касающихся обустройства молниезащиты на государственных объектах любой формы собственности, в инструкции под данным обозначением рассматривается порядок подготовки и хранения всех сопровождающих документов.

Документация

Подготавливаемая при этом исполнительная документация должна включать в свой состав полный комплект расчётов, схем, чертежей и пояснительных записок, определяющих порядок монтажа специального оборудования в пределах защищаемой зоны.

При её подготовке должны учитываться как расположение здания на генеральном плане застройки (с учётом прокладываемых коммуникаций), так и климатические условия в данной местности.

Сдача объекта

Кроме того, этим документом устанавливается общий порядок технической приёмки комплексов молниезащиты, а также особенности сдачи их в эксплуатацию. Особо оговаривается, что для приёмки здания или сооружения назначается специальная комиссия, состоящая из представителей исполнителя и заказчика, а также инспектора пожарной службы.

По результатам изучения представленной разработчиком документации оформляются акты приёмки и допуска оборудования молниезащиты в эксплуатацию.

После этого на каждое отдельное устройство обязательно оформляются специальные рабочие паспорта (на всю систему и заземлитель), которые остаются у лица, ответственного за электрохозяйство объекта.

Проверка

В разделах инструкции, касающихся эксплуатации введённых в действие устройств молниезащиты отдельно оговаривается, что порядок их содержания и обслуживания определяется основными положениями ПУЭ. При этом с целью поддержания систем в рабочем состоянии должны проводиться ежегодные проверки всех её составляющих.

Такие освидетельствования организуются перед началом сезона гроз, а также после внесения в конструкцию молниезащиты каких-либо изменений и усовершенствований.

Внутренняя молниезащита (УЗИП)

Для защиты оборудования и электрических коммуникаций внутри здания мы рекомендуем предусмотреть комплекс мер, позволяющих исключить воздействие опасных перенапряжений.

Защита электрической сети. Защита в главном/вводном распределительном щите

В главном/вводном распределительном щите устанавливается устройство защиты от импульсных перенапряжений УЗИП класса I+II+III LEUTRON PP BCD TT 25/100, которое выбрано в соответствии с трехфазным вводом в дом и системой питания TT или TN-S. Подключение выполняется последовательно (V-подключение). Мы рекомендуем использовать предохранители F1(см.схему на рисунке 4) без временной задержки, номиналом до 125 А. Если установлен вводной выключатель (или защитные предохранители вместо него), рассчитанный по нагрузке электросети, и его номинал меньше 125 А, то установка дополнительных предохранителей F1 не требуется. Схема подключения УЗИП показана на рисунке 4.

Рисунок 4. Схема подключения УЗИП класса 1+2+3 для коттеджа

Без указанных мер молниезащита объекта является неполной, поскольку только применение защитных устройств позволяет снизить перенапряжения в сети до безопасного для защищаемого оборудования уровня.

Таблица 1. Перечень необходимых материалов:

Подробный пример расчёта молниезащиты и заземления коттеджа

С приходом весны наступает пора ожидания грозового сезона, поэтому важно заблаговременно позаботиться о молниезащите собственного дома. Множество новостей в последние годы о все более частых ударах молнии в частные дома говорит о том, что этот вопрос не может быть оставлен без внимания

Современные дома в коттеджных поселках обязательно должны быть снабжены надежными и долговечными молниеприемниками, заземляющими устройствами и устройствами защиты от перенапряжений. Все это оборудование должно быть правильно рассчитано и установлено, тогда оно будет справляться со своей задачей. Представляем вам пример расчета молниезащиты и УЗИП для коттеджа с подробным расположением необходимого оборудования на рисунках.

Виды молниеприемников

Системы молниезащиты зданий могут выполняться по различным схемам. Чаще всего используются классические варианты со стержневыми молниеотводами, состоящими из стержней, соединенных с заземляющим контуром специальным проводником. Они отличаются простотой изготовления и надежностью в процессе эксплуатации. В других конструкциях основным элементом служит пространственная сетка, расположенная на крыше здания.

При прямом ударе молнии, она выполняет распределение и последующее гашение разряда. Натяжные системы работают по такому же принципу, что и стержневые конструкции, только принимающие проводники натягиваются по всему периметру крыши защищаемого объекта.

В конструкциях перечисленных схем используются стальные стержни, тросы или сетки, изготовленные из прутка диаметром не ниже 6 мм. Соединение узлов выполняется с помощью сварки. Натяжной защитный молниеотвод применяются на кровлях со сложной конфигурацией. Для пространственной сетки необходимо больше материалов, а их установка достаточно сложная, требующая знаний и практических навыков.

Каждый молниеотвод выбирается в индивидуальном порядке. Учитываются конструктивные особенности зданий и сооружений, их форма, размеры и расположение относительно друг друга. На основе этих данных делается расчет молниезащиты. Все подобные устройства создают условную защитную зону, примыкающую к ним со всех сторон.

Внутри этого пространства все объекты оказываются под защитой, и им не страшны прямые удары молний. Здесь обеспечивается определенная степень надежности, разделенная на два типа: А – 99,5% и более, Б – 95% и более. Второй вариант, как правило, используется на объектах сельского хозяйства.

Почему стоит обратиться к профессионалам?

Монтаж такой системы требует тщательного и ответственного подхода. Любые неточности или ошибки могут привести к плачевным последствиям. Молниезащита 1, 2, 3 категории, выполненная квалифицированными специалистами, – это гарантия:

  • длительного и бесперебойного функционирования;
  • максимального уровня безопасности;
  • надежности;
  • доступной стоимости;
  • выполнения поставленной задачи за короткое время;
  • профессионального определения уровня молниезащиты;
  • оперативного и грамотного монтажа системы.

Поиск альтернативного решения и максимальное качество – основные преимущества обращения к специалистам.

Молниезащита цена

Для определения стоимости системы молниезащиты нам понадобится информация:

  1. проект здания;
  2. фотографии здания с 4-х сторон;
  3. габаритные размеры здания (длина, ширина, высота стены до начала кровли, длина ската, длина конька);
  4. материал покрытия кровли;
  5. форма конька (полукруглый/углообразный);
  6. наличие элементов (окно мансардное, труба дымовая, труба вентиляционная, антенна и т.д.) выступающих над кровлей (указать расстояние);
  7. материал и размер труб на кровле (диаметр или по периметру, высота);
  8. наличие ливневок; местоположение и диаметр водосточных труб;
  9. материал фасада (основной материал стены; материал и толщина утеплителя);
  10. наличие снегозадержания, ограждения кровли и лестниц для обслуживания;
  11. вид почвы.

Воспользуйтесь нашим сервисом для онлайн расчета молниезащиты.

Необходимо обратиться к сопровождающей документации, что бы ответить от чего зависит цена на молниезащиту, а точнее к ТКР 366-2011:

Для сооружений 1-го уровня молниезащиты количество используемых элементов в системе молниезащиты будет больше и соответственно цена молниезащиты будет выше. А для сооружений 4-го уровня количество используемых элементов меньше и цена молниезащиты соответственно меньше.

В то же время, независимо от уровня молниезащиты, для крупногабаритного объекта необходимо большое количество оцинкованного проводника (оцинкованный круг или оцинкованная полоса).

А при наличии сложного строения кровли (ломаная крыша, наличие большого количества выводимых труб и приемных антенн и других выступающих элементов, находящихся выше кровли) увеличивается количество молниеприемных мачт.

Все эти условия и будут оказывать влияние на формирование цены на молниезащиту.

Специалисты в кратчайшие сроки и бесплатно проведут расчет и составят перечень необходимых элементов для монтажа системы молниезащиты и заземления Вашего строения. А также объяснят почему выбраны именно эти элементы для молниезащиты Вашего сооружения. И ответят на вопрос: молниезащита цена.

При необходимости направим в дружественную проектную организацию (с хорошей скидкой), где составят проект и выдадут необходимый комплект сопровождающей документации, согласно законодательству РБ.

Молниеотвод и спуск

Что касается первой составляющей молниезащиты (молниеприемника) – требованиями ПУЭ предусматривается, чтобы он располагался в самой верхней точке защищаемого строения.

Для стандартных конструкций штыревого класса место размещения этого элемента выбирается исходя из того, чтобы заостренный конец его пики находился на 2-3 метра выше плоскости или конька крыши.


При наличии на защищаемом объекте нескольких штыревых молниеприемников согласно общепринятой методике обязательно просчитывается расстояние между соседними молниеотводами.

В случае использования тросового или сеточного молниеприемника для соответствующих элементов молниезащиты проводят расчеты либо основные параметры троса (длина и сечение), либо размеры отдельной ячейки сетки.

Токоотвод необходим для перенаправления электрического разряда, принятого молниеприемником, в направлении заземляющего устройства. С одной стороны он подсоединяется к «уловителю» молний, а с другой – к конструкции заземлителя.

Его основными расчетными величинами являются материал отводящей ленты, ее длина и сечение, обеспечивающие наименьшее электрическое сопротивление отводящей цепочки.

С точки зрения расчета системы для достижения требуемого результата этот элемент должен изготавливаться из металлов с высокой электропроводностью и иметь достаточно большое сечение (обычно оно составляет 6-8 кв. мм).

Устройство заземления ГРПШ

Соединение заземляющих проводников между собой производится сваркой по ГОСТ 5264-80. Длина сварного шва равна двойной ширине при прямоугольном сечении токоотвода. Заземление выполняется присоединением всех металлических нетоковедущих частей оборудования к заземляющему устройству. Защита от вторичных проявлений молнии, статического электричества и с целью уравнивания потенциалов выполняется присоединением, металлического корпуса технологического шкафа к системе уравнивания потенциалов. В соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003) установка должна быть защищена от прямых ударов молнии, вторичных её проявлений и заноса высокого потенциала через наземные и подземные металлические коммуникации. Молниезащита ГРП осуществляется установкой молниеприемников высотой 10м.

Рис.4 Схема заземления в системе молниезащиты ГРПШ

Молниеотвод подключается к комбинированному заземляющему устройству, состоящему из горизонтальных (полоса 4х20) и вертикальных заземлителей (уголок 40х40х4).

Все металлические элементы выше поверхности земли покрыть краской БТ 177 по ГОСТ 5631-79* в два слоя по грунту ГФ 017 по ТУ 6-27-7-89.

Молниеотвод (h=10м) запроектирован из стальных труб по ГОСТ 10704-91. Фундамент под молниеотвод — монолитный железобетонный из бетона кл. В15, W4, F50, рабочая арматура класса А III, конструктивная- класса А I. Сводные конструктивные решения приведены в графической части ниже.

Расчет заземляющего устройства

В современном мире, мы не представляет свою жизнь без использования электричества. Оно вокруг нас повсюду и именно оно позволило человечеству перейти на совершенно новый уровень развития

Переоценить его важность невозможно, однако при всех своих положительных качествах, за своей безобидностью и простотой, скрывается колоссальная энергия, которая представляет смертельную опасность

Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство – заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.

Наш сервис предлагает вам выполнить расчет заземления с помощью удобного онлайн-калькулятора. На основании типа грунта, климатической зоны и видов заземлителей, программа предоставит результат по сопротивлению отдельных стержней, а также общему сопротивлению на растекание. Мы работаем только по последним актуальным данным, в качестве источников использовались:

  • правила устройства электроустановок;
  • нормы устройства сетей заземления;
  • заземляющие устройства электроустановок – Карякин Р. Н.;
  • справочник по проектированию электрических сетей и электрооборудования – Барыбина Ю. Г.;
  • справочник по электроснабжению промышленных предприятий – Федорова А. А. и Сербиновского Г. В.

Устройство заземления молниезащиты

Заземляющие контуры располагаются на расстоянии не менее 1 метра от самого объекта, дорожек и прочих мест частого появления людей. Данное требование позволяет избежать шагового напряжения, возникающего в процессе растекания заряда по грунту.

При наличии у объекта массивного железобетонного фундамента, заземление должно располагаться еще дальше, а внутри здания устанавливаются грозоразрядники, защищающие электронную аппаратуру. Это требование обязательно для выполнения, поскольку часть заряда молнии попадает на фундамент и другие элементы, контактирующие с ним – инженерные сети, корпуса оборудования.

Основным показателем заземления является его сопротивление. Если используются два отдельных контура, они соединяются между собой стальными проводниками при помощи сварки. Показатель сопротивления контура должен быть минимальным, чтобы ток мог легко уходить в землю. Если удельное сопротивление грунта 500 Ом, то нормативное сопротивление заземлителя составит 10 Ом. При более высоких сопротивлениях грунта для вычислений применяется формула: Rз = 10 + 0,0022 (ρ – 500) Ом, где Rз – сопротивление заземлителя, ρ – показатель удельного сопротивления грунта.

Нормативные значения можно получить путем замены грунта. Старый грунт убирается, а в яму или траншею закладывается земля с другими параметрами и характеристиками. После этого в обновленном грунте выполняется монтаж заземления. В другом случае в грунт добавляются химические реагенты, способные изменить его показатели в нужную сторону.

После того как заземление установлено, в дальнейшем проводятся регулярные замеры его сопротивления. Если его показатели выходят за пределы нормативного диапазона, следует выполнить установку дополнительного штыря или заменить несоответствующий элемент

Особое внимание обращается на соединения между всеми компонентами заземляющего устройства

Расчет заземляющих устройств

Как и предыдущий вариант, это тоже относительно простая в использовании программа для расчетов заземления. Помимо интересующего нас направления, она позволяет определять и параметры молниезащиты. Интерфейс этого программного обеспечения при вычислениях также не вызывает никаких сложностей с операциями.


Расчет заземляющих устройств

Для вычислений в поля программы необходимо внести такую информацию:

  • нормативную величину сопротивления электрическому току, которую можно получить;
  • тип грунта от которого выбирается его удельное сопротивление;
  • климатическая зона, в которой будет устанавливаться заземление;
  • габаритные параметры вертикальных и горизонтальных заземлителей и способ их размещения.

В результате работы программы пользователь получает количество электродов и прогнозируемую величину сопротивления.

Как рассчитать заземление в частном доме вручную

Как вы уже поняли, основной параметр, который необходимо рассчитать – это общее сопротивление на растекание, т.е. нужно подобрать такую конфигурацию электродов, чтобы сопротивление заземляющего устройства, не превышало нормативное. Согласно положениям правил устройств электроустановок (ПЭУ), необходимо соблюдать определенные максимумы для токов:

  • 2 Ом — для 380 вольт;
  • 4 Ом — для 220 вольт;
  • 8 Ом — для 127 вольт.

Правильный расчет начинается с подсчета оптимального размера и количества стержней. Для того чтобы сделать это вручную, легче всего воспользоваться упрощенными формулами, приведенными ниже.

  • Ro – сопротивление стержня, Ом;
  • L – длина электрода, м;
  • d – диаметр электрода, м;
  • T – расстояние от середины электрода до поверхности, м;
  • pэкв – сопротивление грунта, Ом;
  • ln — натуральный логарифм;
  • π — константа (3,14).
  • Rн – нормируемое сопротивление заземляющего устройства (2, 4 или 8 Ом).
  • ψ – поправочный климатический коэффициент сопротивления грунта (1,3, 1,45, 1,7, 1,9, в зависимости от зоны).

Используя эти формулы, вы можете рассчитать заземляющее устройство достаточно точно, однако для упрощения расчета некоторые коэффициенты опускаются.

Также очень важно, чтобы при выборе глубины залегания и длины заземляющих стержней, нижний конец проходил ниже уровня промерзания, так как при отрицательных температурах резко возрастает сопротивление грунта, и возникают определенные сложности

Калькулятор elec.ru

Достаточно удобный вариант расчета заземления, если у вас нет времени для установки программы на ПК. Это онлайн калькулятор, который даже при минимальной скорости интернета позволит рассчитать основные параметры заземляющих проводников. Для этого вам достаточно перейти на страницу калькулятора и внести соответствующие данные в поля сайта:

  • предельное значение сопротивления для заземления;
  • характеристики грунта, в котором оно будет устанавливаться;
  • параметры для вертикальных электродов и горизонтальных соединений;

Нажмите кнопку «Рассчитать» и в разделе расчетных данных появятся интересующие вас параметры.


Программа расчета elec.ru

Чтобы перейти к этой утилите нажмите на ссылку: https://www.elec.ru/calculators/zazemlenie/